Requirement of Smad4-mediated signaling in odontoblast differentiation and dentin matrix formation

نویسندگان

  • Chi-Young Yun
  • Hwajung Choi
  • Young-Jae You
  • Jin-Young Yang
  • Jin-A Baek
  • Eui-Sic Cho
چکیده

Dentin is the major part of tooth and formed by odontoblasts. Under the influence of the inner enamel epithelium, odontoblasts differentiate from ectomesenchymal cells of the dental papilla and secrete pre-dentin which then undergo mineralization into dentin. Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) signaling is essential for dentinogenesis; however, the precise molecular mechanisms remain unclear. To understand the role of TGF-β/BMP signaling in odontoblast differentiation and dentin formation, we generated mice with conditional ablation of Smad4, a key intracellular mediator of TGF-β/BMP signaling, using Osr2 or OC-Cre mice. Here we found the molars of Osr2CreSmad4 mutant mice exhibited impaired odontoblast differentiation, and normal dentin was replaced by ectopic bone-like structure. In Osr2CreSmad4 mutant mice, cell polarity of odontoblast was lost, and the thickness of crown dentin was decreased in later stage compared to wild type. Moreover, the root dentin was also impaired and showed ectopic bone-like structure similar to Osr2CreSmad4 mutant mice. Taken together, our results suggest that Smad4-dependent TGF-β/BMP signaling plays a critical role in odontoblast differentiation and dentin formation during tooth development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis.

TGFβ/BMP signaling regulates the fate of multipotential cranial neural crest (CNC) cells during tooth and jawbone formation as these cells differentiate into odontoblasts and osteoblasts, respectively. The functional significance of SMAD4, the common mediator of TGFβ/BMP signaling, in regulating the fate of CNC cells remains unclear. In this study, we investigated the mechanism of SMAD4 in regu...

متن کامل

Cell autonomous requirement for TGF-β signaling during odontoblast differentiation and dentin matrix formation

TGF-beta subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-beta signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-beta signaling contributes to the terminal differentiation of odontoblast and dentin formation during to...

متن کامل

Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice.

Keratocystic odontogenic tumors (KCOTs) are cystic epithelial neoplasias with a high recurrence rate. However, the molecular mechanisms underlying the initiation and progression of KCOTs are still largely unknown. Here, we show that specific ablation of Smad4 in odontoblasts unexpectedly resulted in spontaneous KCOTs in mice. The mutant mice exhibited malformed teeth characterized by fractured ...

متن کامل

In Vitro Reparative Dentin: a Biochemical and Morphological Study

In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphological, biochemical and biomolecular methods. Alizarin red staining showed mineral deposition while t...

متن کامل

Odontoblast-like differentiation and mineral formation of pulpsphere derived cells on human root canal dentin in vitro

BACKGROUND The revitalization or regeneration of the dental pulp is a preferable goal in current endodontic research. In this study, human dental pulp cell (DPC) spheres were applied to human root canal samples to evaluate their potential adoption for physiological tissue-like regeneration of the dental root canal by odontoblastic differentiation as well as cell-induced mineral formation. MET...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2016